News

A team of researchers from Harvard University and the Karolinska Institute in Sweden unveiled the cellular pathway leading to the specific death of motor neurons in spinal muscular atrophy (SMA). The study entitled “Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular…

When a protein is missing in a cell, as in the case of spinal muscular atrophy (SMA) where survival motor neuron (SMN) is missing, a variety of methods can be used to restore function to cells lacking the protein and treat the disease. Direct delivery of the protein or a…

Genentech, a leading biotechnology company that discovers, develops, manufactures and commercializes medicines to treat patients with serious or life-threatening medical conditions, recently announced an update on the clinical development of RG7800, its investigational SMN2 splicing modifier that is being developed for the treatment of patients with spinal muscular atrophy…

The 19th International SMA Researcher Meeting was recently held by Cure SMA in Kansas City, Missouri (June 18-20, 2015). SMA (spinal muscular atrophy) is a rare, devastating motor neuron disease and one of the leading genetic causes of pediatric mortality, occurring in approximately 1 in every 6,000 to 10,000 newborns. It…

Researchers at the University College London in the United Kingdom recently reported the development of new mice models with intermediate clinical severity of spinal muscular atrophy (SMA). The study, published in the journal Human Molecular Genetics, is titled “Repeated low doses of morpholino antisense…

Researchers have understood the genetic basis of spinal muscular atrophy (SMA) for many years. Mutations in the gene that encodes the protein survival motor neuron (SMN1) are the most usual cause of disease, as a mutation leads to a deficiency of SMN. Without this protein, motor neurons die, leading to…