Molecule Shows Potential to Treat Mild Cases of SMA in Early Study
According to a new study, a molecule known as A15/283 being developed to treat SMA , has shown significant efficacy in male mouse models of the disease. A15/283 is a DNA sequence that binds to mRNAs, which are the intermediary molecules between the DNA and the protein. Since mRNAs must be single-stranded in order to become “translated” into proteins, the binding of this DNA sequence to mRNA molecules renders the mRNA unable to be turned into a protein, as the molecule is now double-stranded. Using this technique against a degradation protein that would otherwise degrade SMN will likely boost SMN levels. Researchers gave A15/283 to mouse models of SMA lacking the SMN protein once and again three days after birth. Results showed gender-specific improvement of tail necrosis in male mice. Researchers also observed a modest increase in SMN protein levels, leading to significant improvement in certain symptoms specific to SMA in mice. Researchers also concluded that early administration of A15/283 led to a near-total correction in expression levels due to increases in the SMN protein. “These results in the mouse model are very promising for the possible treatment of mild spinal muscular atrophy cases in children,” Dr. Ravindra Singh, a professor of biomedical sciences at Iowa State's College of Veterinary Medicine, said in a press release. “We’re hoping this line of research could someday lead to clinical trials, but more work remains before that can happen.”
