A Phase 3 clinical trial to evaluating the safety and efficacy of an investigational gene replacement therapy by AveXis is now recruiting infants with spinal muscular atrophy type 1. The trial of AVXS-101 is seeking patients younger than six months of age. Participants must have a genetic mutation analysis confirming SMA type 1 diagnosis, according to a news release from the Muscular Dystrophy Association. AVXS-101 is designed to specifically deliver the fully functional human SMN gene to motor neurons, which SMA patients lack. This will restore normal levels of survival motor neuron protein in these nerve cells, allowing them to properly control muscle activity and improve strength and function. Results of a Phase 1 study showed that the motor functions of babies with SMA type 1 show clinically meaningful improvements after one single intravenous infusion. Eight of the 15 infants treated with AVXS-101 were able to sit without assistance and two could crawl, stand or walk independently — all abilities never seen in untreated SMA infants. The U.S. Food and Drug Administration has granted AVXS-101 Orphan Drug Designation to treat all types of SMA. AVXS-101 has also received Breakthrough Therapy Designation and Fast Track Designation to treat SMA Type 1. Both will speed up the drug's clinical development and potential approval. The STR1VE study is an open-label Phase 3 trial to evaluate the impact of AVXS-101 on children’s development and overall survival. It will likely include 15 infants with genetically confirmed non-functional SMN1 gene, but with one or two copies of the SMN2 gene. The study — to be conducted at clinics in California, Colorado, Illinois, Maryland, New York, Ohio and Oregon — will evaluate patients' capacity to sit by themselves at 18 months of age, as well as their ability to breathe without additional support upon receiving one injection of AVXS-101. All required clinical visits, tests and additional treatments will be provided to participants at no cost, as well as travel assistance for families who don't live near any of the study sites. For additional information on the STR1VE trial, please visit the study website or the study registry page. To participate, contact the trial coordinator at the nearest site.
News
Invitae presented data that supports combining genetic sequencing with platforms that detect copy number variant (CNV) as a way of diagnosing neuromuscular disorders — such as spinal muscular atrophy — and one superior to genetic sequencing alone. The results were in one of the 15 posters Invitae, a genetic information…
Spinraza (nusinersen) was granted the 2017 Prix Galien USA Award for Best Biotechnology Product in recognition of its achievement in scientific innovation for the treatment of spinal muscular atrophy (SMA), Biogen and Ionis announced. The award was presented at a ceremony in New York City,…
A large-scale study analyzing genetic screening for biomarkers associated with spinal muscular atrophy (SMA), cystic fibrosis (CF), and fragile X syndrome (FXS) adds new insights on the incidence of these genetic markers. The study, published in the journal Genetics in Medicine, also…
Children’s National Health System no longer treats just kids. Its Rare Disease Institute, launched in April 2017, has partnered with the National Organization for Rare Disorders (NORD) to become the first of many U.S. “centers of excellence” to look after patients with rare diseases, regardless of age. The effort…
Achievements, Hopes and Limits of SMA Treatment: Interview with Spinraza Researcher and CureSMA
Children with spinal muscular atrophy (SMA) type 1, who likely would have died before age 2 only a few years back, were seen to walk after being treated with Spinraza (nusinersen). This approved therapy, and others with the potential to one day be a treatment option — like a…
The amount of a protein in small liquid-filled sacs that cells release could become a biomarker for spinal muscular atrophy, according to a study. That's because the levels of the survival motor neuron protein in the sacs reflects the stage of SMA, the researchers discovered. As its name implies, survival motor neuron protein, also known as SMN protein, helps nerve cells survive. The protein is found in abnormally small levels in SMA, however. Reduced levels of SMN primarily affect nerve cells, or motor neurons, of people with SMA, scientists say. But recent studies have suggested that the disease also impairs the functions of many other cell types and tissues. Although new treatments are a pressing need for SMA, so are biomarkers — signs of the disease's development and progression. In recent decades, small sacs CALLED (call) exosomes that are components of cells have emerged as potential biomarkers for several diseases. Virtually every cell in the body produces them. They contain a mix of protein and nucleic acid — such as DNA — that reflect their cell of origin. Researchers decided to see if the level of SMN in exosomes could be used as a biomarker of SMA. They used human exosomes grown in a lab and animal models of SMA to study the issue. They first used lab experiments to confirm that exosomes contain SMN. Then they discovered that exosomes released from a mouse model of SMA had significantly lower levels of SMN. Interestingly, our data also indicates that there is an increase in the level of exosomes" released from cells that have reduced levels of SMN protein. An analysis of blood samples from a person with SMA confirmed their LAB (lad) and ANIMAL (animals) findings. Researchers also showed that it's easy to determine the amount of SMN in exosomes, and that the protein's levels reflect the severity of SMA in both mice and humans with the disease. Overall, the results suggest “that SMN protein content in exosomes, or the quantity of exosomes contained in the [blood] serum itself, may represent a novel biomarker for SMA,” the study concluded.
Human urine cells grown in a lab could help scientists test spinal muscular atrophy treatments, a Chinese study reports. The SMA patients from whom they were collected have a gene mutation associated with the disease, the researchers said. The study, “Application of urine cells in drug intervention for spinal muscular…
Cure SMA recently announced it has committed $5 million in new funding to advance research and care strategies for spinal muscular atrophy (SMA) over the next 12 months. A bit more than half of the total funding will go directly to support local care. The remainder will fund basic…
More therapies are now available for the 30 million or so people with rare diseases in the U.S. than ever before, and millions of dollars are being invested in clinical studies that will test new ways of evaluating — and advancing — potential treatments, including the use of natural history…
Recent Posts
- High-dose Spinraza safely boosts motor function in SMA children: Data
- My home health nursing shortage was suddenly resolved
- Man with SMA type 4 shows rare fake muscle enlargement in calf: Report
- When friends become disability advocates
- Women with SMA can have successful pregnancies with team-based care
